A new algorithm for choosing initial cluster centers for k-means
نویسندگان
چکیده
The k-means algorithm is widely used in many applications due to its simplicity and fast speed. However, its result is very sensitive to the initialization step: choosing initial cluster centers. Different initialization algorithms may lead to different clustering results and may also affect the convergence of the method. In this paper, we propose a new algorithm for improving the initialization of the cluster centers by reducing dimensions followed by moving cluster centers towards high density regions. Our algorithm is compared with three other initialization algorithms for k-means. And the effectiveness of our approach is shown by a series of carefully designed experiments. Keywords-K-means, cluster analysis
منابع مشابه
Data Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملClustering with Intelligent Linexk-Means
The intelligent LINEX k-means clustering is a generalization of the k-means clustering so that the number of clusters and their related centroid can be determined while the LINEX loss function is considered as the dissimilarity measure. Therefore, the selection of the centers in each cluster is not randomly. Choosing the LINEX dissimilarity measure helps the researcher to overestimate or undere...
متن کاملA New Initialization Method to Originate Initial Cluster Centers for K-Means Algorithm
K means algorithm is most popular partition based algorithm that is widely used in data clustering. A Lot of algorithms have been proposed for data clustering using K-Means algorithm due to its simplicity, efficiency and ease convergence. In spite this K-Means algorithm has some drawbacks like initial cluster centers, stuck in local optima etc. In this study, a new method is proposed to address...
متن کاملData Clustring Using A New CGA(Chaotic-Generic Algorithm) Approach
Clustering is the process of dividing a set of input data into a number of subgroups. The members of each subgroup are similar to each other but different from members of other subgroups. The genetic algorithm has enjoyed many applications in clustering data. One of these applications is the clustering of images. The problem with the earlier methods used in clustering images was in selecting in...
متن کاملData Clustering Using Harmony Search Algorithm
Being one of the main challenges to clustering algorithms, the sensitivity of fuzzy c-means (FCM) and hard c-means (HCM) to tune the initial clusters centers has captured the attention of the clustering communities for quite a long time. In this study, the new evolutionary algorithm, Harmony Search (HS), is proposed as a new method aimed at addressing this problem. The proposed approach consist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013